3,058
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Curcumin attenuates prostatic hyperplasia caused by inflammation via up-regulation of bone morphogenetic protein and activin membrane-bound inhibitor

, , , , , , , , & show all
Pages 1024-1033 | Received 16 Oct 2020, Accepted 23 Jun 2021, Published online: 06 Aug 2021
 

Abstract

Context

Inflammation and epithelial-mesenchymal transition (EMT) play important roles in the occurrence and development of benign prostatic hyperplasia (BPH); curcumin exerts anti-proliferative, anti-inflammatory, and anti-EMT effects.

Objective

To explore the anti-inflammatory and anti-EMT mechanisms of curcumin in BPH.

Materials and methods

Ten-week-old male C57BL/6 mice were administered lipopolysaccharide (LPS, 100 µg/kg) in the prostate lobules to establish an inflammatory BPH model (LPS group), and curcumin (120 mg/kg) was administered into the abdominal cavity for 2 weeks (three times a week, curcumin-treated group). A group of healthy mice served as the control group. The expression of Toll-like receptor 4 (TLR4), bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), EMT markers, inflammatory cytokines, and transforming growth factor β1 (TGF-β1) was detected by PCR and western blotting. TGF-β1 (0.1 ng/mL) and LPS (100 ng/mL) were used to induce EMT in benign prostatic hyperplasia epithelial cells (BPH-1).

Results

In vivo, curcumin reduced the size of the prostate, suppressed the expression of vimentin and TLR4, and increased the expression of E-cadherin and BAMBI in the LPS-induced BPH mouse model. Moreover, curcumin decreased the levels of IL-6 and TNF-α by 44.52 and 46.17%, respectively. In vitro, curcumin attenuated cell proliferation, suppressed the expression of vimentin and TLR4, and increased the expression of E-cadherin and BAMBI in BPH-1 cells. Furthermore, BAMBI knockdown reversed the expression of vimentin and E-cadherin induced by curcumin.

Discussion and conclusion

This study demonstrated that curcumin alleviated hyperplasia, EMT, and inflammation in vivo. Furthermore, curcumin suppressed EMT by targeting BAMBI via the TLR4/BAMBI/TGF-β1 signalling pathway in vitro, demonstrating its potential utility in BPH treatment.

Disclosure statement

The authors report no conflict of interest.

Additional information

Funding

The National Natural Science Foundation of China (No. 81700663) supported this research work.