41
Views
1
CrossRef citations to date
0
Altmetric
Tumor Therapy

Targeting CD24 for treatment of ovarian cancer by short hairpin RNA

, , , , , , , , , , , & show all
Pages 642-652 | Published online: 16 Sep 2009
 

Abstract

Background aims

CD24 is markedly overexpressed in ovarian cancer and plays a critical role in ovarian cancer survival and metastasis, rendering it an interesting target for anti-tumor therapy. Using short hairpin RNA (shRNA) targeting CD24, we aimed to investigate the anti-tumor efficacy of CD24 knockdown in ovarian cancer cells in vitro and in vivo.

Methods

CD24 shRNA vector (CD24–shRNA) and empty plasmid vector (EP) were transfected into ovarian cancer SKOV3 cells and the knockdown efficacy assessed by Western blot analysis. The effects of CD24 knockdown in SKOV3 cells in vitro, including cell viability and apoptosis, were determined using methyl thiazolyl blue tetrazolium bromide (MTT), flow cytometry and propidium iodide (PI) staining assays. The effects in vivo of CD24 knockdown on angiogenesis, cell proliferation and apoptosis were assessed using immunohistochemistry against CD31, proliferating cell nuclear antigen (PCNA) and terminal deoxynucleotidyl transferase-mediated nick end-labeling (TUNEL) assays.

Results

Transfection of CD24–shRNA effectively down-regulated CD24 expression in vitro and in vivo. Administration of CD24–shRNA into nude mice bearing ovarian cancer significantly suppressed tumor volume growth.

Conclusions

Knockdown of CD24 expression by CD24–shRNA significantly inhibited cell viability and induced apoptosis of SKOV3 cells in vitro. Administration with CD24–shRNA in vivo suppressed tumor volume increase by microvessel density (MVD) decrease, cell proliferation inhibition and apoptosis induction. All the data suggested that knockdown of CD24 by shRNA might be a potential therapeutic approach against human ovarian cancer.

Acknowledgements

This work was kindly supported by grants from the National 973 Basic Research Program of China (2004CB518800 and 2004CB518805) and the National 863 High-Tech Research Program (2007AA021008).

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.