352
Views
40
CrossRef citations to date
0
Altmetric
Research Article

Plasmodium falciparum Carbonic Anhydrase is a Possible Target for Malaria Chemotherapy

, &
Pages 249-256 | Published online: 30 Sep 2008
 

Abstract

Plasmodium falciparum is responsible for the majority of life-threatening cases of human malaria. The global emergence of drug-resistant malarial parasites necessitates identification and characterization of novel drug targets. Carbonic anhydrase (CA) is present at high levels in human red cells and in P. falciparum. Existence of at least three isozymes of the α class was demonstrated in P. falciparum and a rodent malarial parasite Plasmodium berghei. The major isozyme CA1 was purified and partially characterized from P. falciparum (PfCA1). A search of the malarial genome database yielded an open reading frame similar to the α-CAs from various organisms, including human. The primary amino acid sequence of the PfCA1 has 60% identity with a rodent parasite Plasmodium yoelii enzyme (PyCA). The single open reading frames encoded 235 and 252 amino acid proteins for PfCA1 and PyCA, respectively. The highly conserved active site residues were also found among organisms having α-CAs. The PfCA1 gene was cloned, sequenced and expressed in Escherichia coli. The purified recombinant PfCA1 enzyme was catalytically active. It was sensitive to acetazolamide and sulfanilamide inhibition. Kinetic properties of the recombinant PfCA1 revealed the authenticity to the wild type enzyme purified from P. falciparum in vitro culture. Furthermore, the PfCA1 inhibitors acetazolamide and sulfanilamide showed good antimalarial effect on the in vitro growth of P. falciparum. Our molecular tools developed for the recombinant enzyme expression will be useful for developing potential antimalarials directed at P. falciparum carbonic anhydrase.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.