429
Views
21
CrossRef citations to date
0
Altmetric
Research Article

Modeling of acetylcholinesterase inhibition by tacrine analogues using Bayesian-regularized Genetic Neural Networks and ensemble averaging

, , &
Pages 647-661 | Received 02 Apr 2006, Published online: 04 Oct 2008
 

Abstract

Acetylcholinesterase inhibition was modeled for a set of 136 tacrine analogues using Bayesian-regularized Genetic Neural Networks (BRGNNs). In the BRGNN approach the Bayesian-regularization avoids overtraining/overfitting and the genetic algorithm (GA) allows exploring an ample pool of 3D-descriptors. The predictive capacity of our selected model was evaluated by averaging multiple validation sets generated as members of diverse-training set neural network ensembles (NNEs). The ensemble averaging provides reliable statistics. When 40 members are assembled, the NNE provides a reliable measure of training and test set R values of 0.921 and 0.851 respectively. In other respects, the ability of the nonlinear selected GA space for differentiating the data was evidenced when the total data set was well distributed in a Kohonen Self-Organizing Map (SOM). The location of the inhibitors in the map facilitates the analysis of the connection between compounds and serves as a useful tool for qualitative predictions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.