1,477
Views
67
CrossRef citations to date
0
Altmetric
Research Article

In vitro inhibitory effects of some heavy metals on human erythrocyte carbonic anhydrases

, &
Pages 745-750 | Received 19 Oct 2006, Accepted 13 Nov 2006, Published online: 04 Oct 2008
 

Abstract

The inhibition of two human carbonic anhydrase (HCA, EC 4.2.1.1) isozymes, the cytosolic HCA I and II, with heavy metal salts of Pb(II), Co(II) and Hg(II)has been investigated. Human erythrocyte CA-I isozyme was purified with a specific activity of 920 EUmg− 1 and a yield of 30% and CA-II isozyme was purified with a specific activity of 8000 EUmg− 1 and a yield of 40% using Sepharose-4B-L tyrosine-sulfanilamide affinity gel chromatography. The overall purification was approximately 104-fold for HCA-I and 900-fold for HCA-II. The inhibitory effects of different heavy metals (lead, cobalt and mercury) on CA activity were determined at low concentrations using the esterase method under in vitro conditions. Ki values for these metals were calculated from Lineweaver-Burk graphs as 1.0, 3.22 and 1.45 mM for HCA-I and 0.059, 1.382 and 0.32 mM for HCA-II respectively. Lead was a noncompetitive inhibitor for HCA-I and competitive for HCA-II, cobalt was competitive for HCA-I and noncompetitive for HCA-II and mercury was uncompetitive for both HCA-I and HCA-II. Lead was the best inhibitor for both HCA-I and HCA-II.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.