1,878
Views
29
CrossRef citations to date
0
Altmetric
Research Article

Superoxide radicals scavenging and xanthine oxidase inhibitory activity of magnesium lithospermate B from Salvia miltiorrhiza

, , , &
Pages 663-668 | Received 02 Mar 2008, Accepted 19 May 2008, Published online: 20 Oct 2008
 

Abstract

In this study we investigated the superoxide radicals scavenging effect and xanthine oxidase inhibitory activity by magnesium lithospermate B, which was originally isolated from the roots of Salvia miltiorrhiza (also named Danshen or Dansham), an important herb in Oriental medicine. Superoxide radicals were generated both in β-NADH/PMS system and xanthine/ xanthine oxidase system. Magnesium lithospermate B significantly inhibited the reduction of NBT induced by superoxide radicals with an IC50 of 29.8 μg/mL and 4.06 μg/mL respectively in the two systems. Further study suggested that magnesium lithospermate B can directly inhibit xanthine oxidase and exhibits competitive inhibition. Magnesium lithospermate B was also found to have the hypouricemic activity in vivo against potassium oxonate-induced hyperuricaemia in mice. After oral administration of magnesium lithospermate B at doses of 10, 20 and 30 mg/kg, there was a significant decrease in the serum urate level when compared to the hyperuricemia control. In addition, magnesium lithospermate B significantly protected HL-60 cells from superoxide radicals-induced apoptosis in the xanthine/ xanthine oxidase reactions. This study provided evidence that magnesium lithospermate B exhibits direct superoxide radicals scavenging and xanthine oxidase inhibitory activity.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Notes

* Co-first author [email protected]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.