1,546
Views
4
CrossRef citations to date
0
Altmetric
Brief Reports

Acipimox inhibits human carbonic anhydrases

ORCID Icon & ORCID Icon
Pages 672-679 | Received 30 Dec 2021, Accepted 30 Jan 2022, Published online: 09 Feb 2022
 

Abstract

Acipimox, a nicotinic acid derivative in clinical use for the treatment of hyperlipidaemia, incorporates a free carboxylic acid and an N-oxide moiety, functionalities known to interact with the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) and inhibit its activity. Herein we report that acipimox acts as a low micromolar CA inhibitor (CAI) against most human (h) isoforms possessing catalytic activity, hCA I – XIV. By using computational techniques (docking and molecular dynamics simulations), we propose that acipimox coordinates through its carboxylate group to the zinc ion from the enzyme active site cavity, whereas the N-oxide group is hydrogen-bonded to the proton shuttle His residue in some isoforms (hCA I) or to active site Thr or Gln residues in other isoforms (hCA II, III, IV, VII, etc). As some CA isoforms are involved in lipogenesis, these data may be useful for the design of more effective CAIs with antiobesity activity.

Acknowledgements

MM thanks Prof. Adalgisa Sinicropi (University of Siena) for granting access to the use of Gaussian 16. We are grateful to Dr. Alfonso Maresca for technical assistance.

Disclosure statement

CT Supuran is Editor-in-Chief of the Journal of Enzyme Inhibition and Medicinal Chemistry. He was not involved in the assessment, peer review, or decision-making process of this paper. The authors have no relevant affiliations of financial involvement with any organisation or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Additional information

Funding

This research was financed by the Italian Ministry for Education and Science (MIUR), grant PRIN: rot. 2017XYBP2R and by Ente Cassa di Risparmio di Firenze (ECRF), grant CRF2020.1395.