1,192
Views
6
CrossRef citations to date
0
Altmetric
Research Paper

Investigation of novel alkyl/benzyl (4-sulphamoylphenyl)carbamimidothioates as carbonic anhydrase inhibitors

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2152811 | Received 08 Nov 2022, Accepted 24 Nov 2022, Published online: 11 Jan 2023
 

Abstract

A library of novel alkyl/benzyl (4-sulphamoylphenyl)carbamimidothioates was synthesised by selective S-alkylation of the easily accessible 4-thioureidobenzenesulphonamide. The compounds were assayed as inhibitors of four human (h) carbonic anhydrase isoforms hCA I, II, VII, and XIII, as well as three bacterial enzymes belonging to the β-CA class, MscCA from Mammaliicoccus (Staphylococcus) sciuri and StCA1 and StCA2, from Salmonella enterica (serovar Typhimurium). Most compounds investigated here exhibited moderate to low nanomolar inhibition constants against hCA I, II, and VII. The cytosolic hCA XIII was also inhibited by these compounds, but not as effective as hCA I, II, and VII. Several compounds were very effective against MscCA and StCA1. StCA2 was less inhibited compared to MscCA and StCA1. Some compounds showed considerable selectivity for inhibiting some CA isoforms. They may thus be considered as interesting starting points for the discovery and development of novel therapeutic agents belonging to this class of enzyme inhibitors.

Disclosure statement

No potential conflict of interest was reported by all author(s) except CTS. CT Supuran is Editor-in-Chief of the Journal of Enzyme Inhibition and Medicinal Chemistry. He was not involved in the assessment, peer review, or decision-making process of this paper. The authors have no relevant affiliations of financial involvement with any organisation or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Additional information

Funding

The work was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 951883 within SPRINGBOARD project.