1,905
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

Identification of new 4-(6-oxopyridazin-1-yl)benzenesulfonamides as multi-target anti-inflammatory agents targeting carbonic anhydrase, COX-2 and 5-LOX enzymes: synthesis, biological evaluations and modelling insights

, , , , , , , , , , ORCID Icon, ORCID Icon, ORCID Icon & show all
Article: 2201407 | Received 18 Mar 2023, Accepted 04 Apr 2023, Published online: 20 Apr 2023
 

Abstract

Multiple inhibitions of CA, COX-2 and 5-LOX enzymes has been recognised as a useful strategy for the development of anti-inflammatory drugs that can avoid the disadvantages of using NSAIDs alone. Here, we report new pyridazine-based sulphonamides (5a-c and 7a-f) as potential multi-target anti-inflammatory candidates. First, the furanone heterocycle in the dual CA/COX-2 inhibitor Polmacoxib was replaced with the pyridazinone one. Then, a hydrophobic tail was appended through benzylation of the 3-hydroxyl group of the pyridazinone scaffold to afford benzyloxy pyridazines 5a-c. Furthermore, the structures were adorned with the polar sulphonate functionality, in pyridazine sulphonates 7a-f, that are expected to be engaged in interactions with the hydrophilic half of the CA binding sites. All of the disclosed pyridazinones were tested for inhibitory activities against 4 hCA isoforms (I, II, IX, and XII), as well as against COX-1/2, and 5-LOX. Furthermore, in vivo anti-inflammatory and analgesic effects of pyridazinones 7a and 7b were examined.

Disclosure statement

CT Supuran is Editor-in-Chief of the Journal of Enzyme Inhibition and Medicinal Chemistry. He was not involved in the assessment, peer review, or decision-making process of this paper. The authors have no relevant affiliations of financial involvement with any organisation or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Additional information

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Small Groups Project under grant number (RGP.1/346/43). The authors acknowledge financial support from the Researchers Supporting Project number (RSP-2023/103), King Saud University, Riyadh, Saudi Arabia.