204
Views
20
CrossRef citations to date
0
Altmetric
Articles

Increased water content in bacterial cellulose synthesized under rotating magnetic fields

, , , , , , , & show all
Pages 192-201 | Received 21 Jun 2016, Accepted 28 Sep 2016, Published online: 27 Oct 2016
 

ABSTRACT

The current study describes properties of bacterial cellulose (BC) obtained from Komagataeibacter xylinus cultures exposed to the rotating magnetic field (RMF) of 50 Hz frequency and magnetic induction of 34 mT for controlled time during 6 days of cultivation. The experiments were carried out in the customized RMF exposure system adapted for biological studies. The obtained BC displayed an altered micro-structure, degree of porosity, and water-related parameters in comparison to the non-treated, control BC samples. The observed effects were correlated to the duration and the time of magnetic exposure during K. xylinus cultivation. The most preferred properties in terms of water-related properties were found for BC obtained in the setting, where RMF generator was switched off for the first 72 h of cultivation and switched on for the next 72 h. The described method of BC synthesis may be of special interest for the production of absorbent, antimicrobial-soaked dressings and carrier supports for the immobilization of microorganisms and proteins.

Acknowledgments

This study was supported by the National Centre for Research and Development in Poland (Grant No. LIDER/011/221/L-5/13/NCBR/2014).

Declaration of interest

The authors report no conflicts of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.