584
Views
6
CrossRef citations to date
0
Altmetric
Original

The cellular origin of cartilage-like tissue after periosteal transplantation of full-thickness articular cartilage defects: An experimental study using transgenic rats expressing green fluorescent protein

, , , , &
Pages 920-926 | Received 19 Jan 2004, Accepted 02 Aug 2004, Published online: 08 Jul 2009
 

Abstract

Background Periosteal transplantation is commonly used for the treatment of articular cartilage defects. However, the cellular origin of the regenerated tissue after periosteal transplantation has not been well defined. The objective of this study was to investigate the cellular origin of the regenerated tissue after periosteal transplantation.

Method Free periosteum was harvested from the tibia of 10-week-old adolescent enhanced green fluorescent protein (GFP-) expressing transgenic Sprague Dawley (SD) rats and was transplanted to full-thickness articular cartilage defects of the patellar groove in normal 10-week-old adolescent SD rats. The periosteum was sutured to the defect with the cambium layer facing the joint cavity. 8 SD rats were killed at 4 weeks and 8 SD rats were killed at 8 weeks after surgery. The repaired tissue was assessed histologically and histochemically. GFP-positive cells derived from the donor periosteum could easily be detected in the repaired tissue by use of a fluorescent microscope.

Results At both 4 and 8 weeks after transplantation, the entire area of the defects had been repaired, with the regenerated tissue being well stained histologically with safranin-O. Most cells in the whole area of the regenerated tissue were GFP-positive, indicating that very few of the cells were GFP-negative cells originating from the recipient rats.

Interpretation This experiment demonstrates that most cells in regenerated tissue after periosteal transplantation using adolescent animals do not originate from recipient cells but from the periosteal cells of the donor.

  ▪

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.