309
Views
47
CrossRef citations to date
0
Altmetric
Research Article

Allelopathic Bacteria and Their Impact on Higher Plants

&
Pages 41-55 | Published online: 29 Sep 2008
 

Abstract

Referee: Dr. Kermit Cromack, Jr., Dept. of Forest Science, Oregon State University, Corvallis, OR 97331

The impact of allelopathic, nonpathogenic bacteria on plant growth in natural and agricultural ecosystems is discussed. In some natural ecosystems, evidence supports the view that in the vicinity of some allelopathically active perennials (e.g., Adenostoma fasciculatum, California), in addition to allelochemicals leached from the shrub's canopy, accumulation of phytotoxic bacteria or other allelopathic microorganisms amplify retardation of annuals. In agricultural ecosystems allelopathic bacteria may evolve in areas where a single crop is grown successively, and the resulting yield decline cannot be restored by application of minerals. Transfer of soils from areas where crop suppression had been recorded into an unaffected area induced crop retardation without readily apparent symptoms of plant disease. Susceptibility of higher plants to deleterious rhizobacteria is often manifested in sandy or so-called skeletal soils. Evaluation of phytotoxic activity under controlled conditions, as well as ways to apply allelopathic bacteria in the field, is approached.

The allelopathic effect may occur directly through the release of allelochemicals by a bacterium that affects susceptible plant(s) or indirectly through the suppression of an essential symbiont. The process is affected by nutritional and other environmental conditions, some may control bacterial density and the rate of production of allelochemicals.

Allelopathic nonpathogenic bacteria include a wide range of genera and secrete a diverse group of plant growth-mediating allelochemicals. Although a limited number of plant growth-promoting bacterial allelochemicals have been identified, a considerable number of highly diversified growth-inhibiting allelochemicals have been isolated and characterized. Some species may produce more than one allelochemical; for example, three different phyotoxins, geldanamycin, nigericin, and hydanthocidin, were isolated from Streptomyces hygroscopicus. Efforts to introduce naturally produced allelochemicals as plant growth-regulating agents in agriculture have yielded two commercial herbicides, phosphinothricin, a product of Streptomyces viridochromogenes, and bialaphos from S. hygroscopicus.

Many species of allelopathic bacteria that affect growth of higher plants are not plant specific, but some do exhibit specificity; for example, dicotyledonous plants were more susceptible to Pseudomonas putida than were monocotyledons. Differential susceptibility of higher plants to allelopathic bacteria was noted also in much lower taxonomical categories, at the subspecies level, in different cultivars of wheat, or of lettuce. Therefore, when test plants are employed to evaluate bacterial allelopathy, final evaluation must include those species that are assumed to be suppressed in nature.

The release of allelochemicals from plant residues in plots of ‘continuous crop cultivation’ or from allelopathic living plants may induce the development of specific allelopathic bacteria. Both the rate by which a bacterium gains from its allelopathic activity through utilizing plant excretions, and the reasons for the developing of allelopathic bacteria in such habitats, are important goals for further research.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.