2,282
Views
12
CrossRef citations to date
0
Altmetric
Research Paper

Regulation of gene expression by translation factor eIF5A: Hypusine-modified eIF5A enhances nonsense-mediated mRNA decay in human cells

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: e1366294 | Received 13 Jun 2017, Accepted 07 Aug 2017, Published online: 28 Sep 2017
 

ABSTRACT

Nonsense-mediated mRNA decay (NMD) couples protein synthesis to mRNA turnover. It eliminates defective transcripts and controls the abundance of certain normal mRNAs. Our study establishes a connection between NMD and the translation factor eIF5A (eukaryotic initiation factor 5A) in human cells. eIF5A modulates the synthesis of groups of proteins (the eIF5A regulon), and undergoes a distinctive two-step post-translational modification (hypusination) catalyzed by deoxyhypusine synthase and deoxyhypusine hydroxylase. We show that expression of NMD-susceptible constructs was increased by depletion of the major eIF5A isoform, eIF5A1. NMD was also attenuated when hypusination was inhibited by RNA interference with either of the two eIF5A modifying enzymes, or by treatment with the drugs ciclopirox or deferiprone which inhibit deoxyhypusine hydroxylase. Transcriptome analysis by RNA-Seq identified human genes whose expression is coordinately regulated by eIF5A1, its modifying enzymes, and the pivotal NMD factor, Upf1. Transcripts encoding components of the translation system were highly represented, including some encoding ribosomal proteins controlled by alternative splicing coupled to NMD (AS-NMD). Our findings extend and strengthen the association of eIF5A with NMD, previously inferred in yeast, and show that hypusination is important for this function of human eIF5A. In addition, they advance drug-mediated NMD suppression as a therapeutic opportunity for nonsense-associated diseases. We propose that regulation of mRNA stability contributes to eIF5A's role in selective gene expression.

Disclosure of potential conflicts of interest

The data in part form the basis for patent US 8603814 B2 held by four of the authors: TP, MBM, MH and HMHA.

Acknowledgements

We thank Ms. Anita Antes for technical assistance, and Dr. Leslie Michelson and Dr. Patricia Soteropoulos for discussions and encouragement.

Funding

This work was supported in part by the Foundation of UMDNJ (to MBM), and the National Institutes of Health (HG006339 to MBM and BT, and GM084089 to BT).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.