1,993
Views
5
CrossRef citations to date
0
Altmetric
Articles

Synthesis of glucose oxidase-PEG aldehyde conjugates and improvement of enzymatic stability

, , &
Pages 788-794 | Received 16 Jan 2017, Accepted 09 Jun 2017, Published online: 06 Jul 2017
 

Abstract

In this article, aldehyde derivative of poly(ethylene glycol) (PEG) was synthesized directly with sodium periodate agent. To obtain a conjugate which possesses better stability, PEG aldehyde was bonded to native enzyme with different molar ratios. The conjugation reaction turned out to be efficient and mild. Colorimetric method was applied to evaluate the enzymatic activity of native GOD and its derivatives by introducing another enzyme, horseradish peroxidase. The GOD–PEG aldehyde conjugate with polymeric chains exhibited reduced enzymatic activity towards the catalytical oxidation of glucose, but with significantly increased thermal stability and elongated lifetime. When GOD was modified with PEG aldehyde the enzymatic activity was decreased 40% at 30 °C. However, when incubated at 60 °C the GOD–PEG aldehyde conjugate still retained the enzyme bioactivity of 40% bioactivity left after 4 h, whereas the native GOD lost almost all the activity in 4 h. The polymer chain attached, the more reduction of the enzymatic activity resulted, however, the longer the lifetime and higher thermal stability of the enzyme obtained.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.