297
Views
5
CrossRef citations to date
0
Altmetric
Research Article

ANN modelling of surface roughness of FDM parts considering the effect of hidden layers, neurons, and process parameters

ORCID Icon, , , , &
Pages 22-32 | Accepted 11 Jun 2022, Published online: 22 Jun 2022
 

ABSTRACT

Hidden layers perform a vital role in the performance of artificial neural networks (ANNs), especially for serpentine problems where the curtailment of accuracy and time complexity is observed. A higher number of hidden layers and neurons enlarge the order of weights and influence the ANN accuracy. In the present work, an ANN model is developed to predict the surface roughness of fused deposition modelling (FDM) parts considering the effect of the number of neurons, hidden layers, layer height, infill density, nozzle temperature, and print speed. A feedforward back-propagation machine learning algorithm is used to model an ANN. This study finds better prediction accuracy with the ANN architecture having two hidden layers with 150 neurons on each layer (R-squared: 0.875) followed by one hidden layer with 250 neurons (R-squared: 0.83). This study finds a decrease in the surface roughness of FDM parts with the increase in infill density. However, the surface roughness was observed to increase with the layer height, print speed, and nozzle temperature. This study finds a decrease in the surface roughness of FDM parts with the increase in infill density and an increase in the surface roughness with the layer height, print speed, and nozzle temperature.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article. However, the additional information that support the findings of this study are available from the corresponding author [SC], upon reasonable request.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.