78
Views
8
CrossRef citations to date
0
Altmetric
Gap Junction Gating & Permeability

The Voltage Gates of Connexin Channels are Sensitive to CO2

, , , &
Pages 233-237 | Published online: 11 Jul 2009
 

Abstract

Cx45 channel sensitivity to CO2, transjunctional voltage (Vj) and inhibition of calmodulin (CaM) expression was tested in oocytes by dual voltage-clamp. Cx45 channels are very sensitive to Vjand close preferentially by the slow gate, likely the same as the chemical gate. With CO2-induced drop in junctional conductance (Gj), the speed of Vj-dependent inactivation of junctional current (Ij) and Vjsensitivity increased. With 40 mV Vj, the τ of single exponential Ijdecay reversibly decreased by ∼40% with CO2, and Gj steady state/Gj peakdecreased multiphasically, indicating that kinetics and Vjsensitivity of chemical/slow-Vjgating are altered by changes in [H+]iand/or [Ca2+]i. With 15 min exposure to CO2, Gjdropped to 0% in controls and by ∼17% following CaM expression inhibition; similarly, Vjsensitivity decreased significantly. This indicates that the speed and sensitivity of Vj-dependent inactivation of Cx45 channels are increased by CO2, and that CaM plays a role in gating. Cx32 channels behaved similarly, but the drop in both Gj steady state/Gj peakand τ with CO2matched more closely that of Gj peak. In contrast, sensitivity and speed of Vjgating of Cx40 and Cx26 channels decreased, rather than increased, with CO2application.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.