5
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental Models To Investigate Inflammatory Processes in Chronic Venous Insufficiency

&
Pages S13-S22 | Published online: 10 Jul 2009
 

Abstract

Chronic venous insufficiency (CVI) is characterized by leukocyte adhesion and infiltration, venous hypertension and dilatation, and valvular dysfunction. The fact that activated white cells can direct a powerful cytotoxic arsenal at parenchymal cells following their extravasation into the tissues led to the original proposal that leukocytes may play a causative role in the pathogenesis of venous disease. A large body of subsequent work indicates that white blood cells are indeed activated in CVI. However, identification of the factors responsible for initiating leukosequestration and activation in such disorders and determination of whether these activated cells then contribute to the progression of venous disease have been hampered by the lack of appropriate animal models that accurately mimic the human condition. Tantalizing evidence suggesting that cyclical periods of ischemia and reperfusion (I/R) may occur in diseased regions of the skin is beginning to accumulate. As is the case with CVI, leukocyte infiltration is a prominent feature in I/R and activated neutrophils play a causative role in the reperfusion component of tissue injury via the targeted release of reactive oxygen metabolites and hydrolytic enzymes. In light of these considerations, many investigators have suggested that examining the mechanisms of I/R injury in skin and skeletal muscle, where ischemia is produced by arterial occlusion, may provide a relevant model for studying the pathogenesis of CVI. Others have suggested that venous occlusion may represent a more appropriate model, as this approach also produces the venous hypertension that is characteristic of the disease. The purpose of this review is to summarize the evidence pointing to the involvement of I/R and venous hypertension as causative factors in CVI-induced leukocyte recruitment. In addition, we will describe the evidence in favor of the view that white blood cells contribute to the pathogenesis of CVI. Finally, we will describe several different experimental models that have been used to examine the role of I/R-induced microvascular dysfunction as it may pertain to the development of CVI, together with a discussion of the relative advantages and limitations of the various models. Microcirculation (2000) 7, S13–S22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.