21
Views
4
CrossRef citations to date
0
Altmetric
Original

ELEVATED RENAL CORTICAL CALMODULIN-DEPENDENT PROTEIN KINASE ACTIVITY AND BLOOD PRESSURE

, , &
Pages 289-300 | Received 27 Nov 2001, Published online: 13 May 2002
 

Abstract

The spontaneously hypertensive rat (SHR) exhibits not only hypertension but also behavioral hyperactivity which are not genetically linked. Two strains of rats, one hypertensive but normoactive (WKHT) and another, hyperactive but normotensive (WKHA), have been generated from SHR. We have reported that in renal proximal tubules, the linkage between D1-like receptors an adenylyl cyclase was impaired in SHR and WKHT but intact in WKHA. The impaired renal D1-like receptor function in the SHR was associated with increased phosphorylation of the D1 receptor, presumably caused by increased phosphorylation by G protein-coupled receptor kinases (GRK) or decreased dephosphorylation by protein phosphatase 2A. Because calmodulin kinase (CaMK) can regulate GRK activity, CaMK activity in renal cortical membranes of WKHA and WKHT were studied. We found that CaMK-dependent phosphorylation was two-fold higher in WKHA than in WKHT. In addition, serine phosphorylation of a 36 KDa and a 24 KDa protein was 5-fold and 3-fold greater in WKHA than in WKHT. We hypothesize that the increased CaMK activity in the renal cortical membrane may serve to inhibit GRK activity in WKHA and prevent the development of hypertension.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.