117
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Calcium Neutralizes Fluoride Bioavailability in a Lethal Model of Fluoride Poisoning

, , &
Pages 349-353 | Published online: 31 Jul 2001
 

Abstract

Objectives: Acute systemic fluoride poisoning can result in systemic hypocalcemia, cardiac dysrhythmias, and cardiovascular collapse. Topical and intraarterial therapy with calcium or magnesium salts reduces dermal injury from fluoride burns. The mechanism of these therapies is to bind and inactivate the fluoride ion. The purpose of this study is to evaluate the effect of calcium and magnesium to decrease the bioavailability of fluoride in a lethal model of fluoride poisoning. Methods: In preliminary studies, we determined that fluoride 3.6 mM/kg intraperitoneally in the form of sodium fluoride was uniformly and rapidly fatal in a mouse model. Using this fluoride dose, we performed a controlled, randomized, blinded study of low-and high-dose calcium chloride (1.8 and 3.6 mM/kg intraperitoneally, respectively) and magnesium sulfate (3.6 mM/kg intraperitoneally) to decrease the bioavailability of the fluoride ion. After injection with sodium fluoride, animals were immediately treated with injections of sodium chloride (control), calcium chloride (low- or high-dose), or magnesium sulfate. The major outcome was 6-hour survival using a Cox Proportional Hazard model. Results: All untreated animals died within 60 minutes. Using a Cox Proportional Hazard model, each 1.8 mM/kg dose of calcium chloride administered reduced the risk of death by 33%. Magnesium sulfate treatment was not associated with a hazard reduction. Conclusion: Calcium chloride administered simultaneously with sodium fluoride reduces the bioavailability of fluoride poisoning in a mouse model. The equivalent dose of magnesium sulfate does not significantly decrease fluoride bioavailability.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.