Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 26, 2002 - Issue 4
48
Views
2
CrossRef citations to date
0
Altmetric
Original

IMPORTANCE OF HELICES A AND H IN OXYGEN BINDING DIFFERENCES BETWEEN BOVINE AND HUMAN HEMOGLOBINS*

, , , , , & show all
Pages 373-384 | Received 03 Jul 2002, Accepted 10 Jul 2002, Published online: 07 Jul 2009
 

Abstract

Human and bovine hemoglobins (Hbs) exhibit several functional differences. They have a similar oxygen affinity in the presence of 2,3-diphosphoglycerate (2,3-DPG); however, bovine Hb has a greatly diminished 2,3-DPG effect, which itself is chloride dependent. The question is to determine whether these differences have a common structural origin, or whether they evolved in an independent fashion. The decreased 2,3-DPG effect can be partially reproduced by mutations at the effector binding sites, substituting the βNA1 valine–NA2 histidine present in human Hb with a methionine. While changes of human Hb at these sites could provoke the bovine characteristic of the lower 2,3-DPG effect, the oxygen affinities of these mutated Hbs were not as low as that of the bovine Hb. Modifications responsible for tertiary structural modifications of helix A in human Hb might help shift the N-terminal methionine position, thereby locking helix A in place. We replaced the residues proline β5(A2), arginine β104(G6), and tyrosine β130(H8) of human Hb by the residues present in bovine β-globin, namely alanine, lysine, and phenylalanine, respectively. These mutations did not allow us to obtain a low oxygen affinity recombinant Hb (rHb). This indicates that other factors also influence oxygen binding and the effects are only partially coupled.

Additional information

Notes on contributors

Claude Poyart

Deceased.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.