280
Views
51
CrossRef citations to date
0
Altmetric
Original Article

Spatial and temporal pattern analysis via spiking neurons

&
Pages 319-332 | Received 02 Dec 1998, Published online: 09 Jul 2009
 

Abstract

Spiking neurons, receiving temporally encoded inputs, can compute radial basis functions (RBFs) by storing the relevant information in their delays. In this paper we show how these delays can be learned using exclusively locally available information (basically the time difference between the pre- and postsynaptic spikes). Our approach gives rise to a biologically plausible algorithm for finding clusters in a high-dimensional input space with networks of spiking neurons, even if the environment is changing dynamically. Furthermore, we show that our learning mechanism makes it possible that such RBF neurons can perform some kind of feature extraction where they recognize that only certain input coordinates carry relevant information. Finally we demonstrate that this model allows the recognition of temporal sequences even if they are distorted in various ways.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.