1,401
Views
66
CrossRef citations to date
0
Altmetric
Reviews

Lysophosphatidic acid-1-receptor targeting agents for fibrosis

, , , , , , & show all
Pages 657-667 | Published online: 24 Mar 2011
 

Abstract

Introduction: The presence of fibrosis is associated with alterations in organ architecture and is responsible for the morbidity of diseases including pneumopathies, systemic sclerosis, liver cirrhosis, chronic cardiovascular diseases, progressive kidney diseases and diabetes. Although a growing number of pro-fibrotic molecules, mediators and other pathways have been reported, there are currently very few antifibrotic molecules being evaluated in clinical trials.

Areas covered: Current knowledge about the contribution of lysophosphatidic acid (LPA), a bioactive mediator acting via specific G-protein coupled receptors (LPAR), in the etiology of fibrosis. In a number of organs, fibrosis is associated with increased LPA production as well as with increased expression of some LPAR subtypes (mainly LPA1R). LPAR–/– knockout mice and treatment of animal models with specific antagonists clearly demonstrate the contribution of LPA1R subtype to the development of kidney, lung, vascular and dermal fibrosis. The involvement of LPA in liver fibrosis is also strongly suspected but still unproven.

Expert opinion: Experiments in animal models clearly demonstrate that LPA1R antagonists have interesting anti-fibrotic potencies. This reveals promising perspectives for the design of new therapeutic approaches to prevent fibrosis-associated diseases. Nevertheless, the number of efficient LPA1R antagonists currently available is still low, and none of them has been used in clinical trials so far.

Notes

This box summarizes key points contained in the article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.