337
Views
78
CrossRef citations to date
0
Altmetric
Review

Tuberculosis pharmacotherapy: strategies to optimize patient care

, ScD, , PharmD & , PharmD
Pages 381-401 | Published online: 04 Feb 2009
 

Abstract

Introduction: The treatment of tuberculosis (TB) is a mature discipline, with more than 60 years of clinical experience accrued across the globe. The requisite Multi-drug treatment of drug-susceptible TB, however, lasts 6 months and has never been optimized according to current standards. Multi-drug resistant TB and TB in individuals coinfected with HIV present additional treatment challenges. Objective: This article reviews the role that existing drugs and new compounds could have in shortening or improving treatment for TB. The key to treatment shortening seems to be sterilizing activity, or the ability of drugs to kill mycobacteria that persist after the initial days of multi-drug treatment. Results: Among existing anti-TB drugs, the rifamycins hold the greatest potential for shortening treatment and improving outcomes, in both HIV-infected and HIV-uninfected populations, without dramatic increases in toxicity. Clinical studies underway or being planned, are supported by in vitro , animal and human evidence of increased sterilizing activity - without significant increases in toxicity - at elevated daily doses. Fluoroquinolones also seem to have significant sterilizing activity. At present, at least two class members are being evaluated for treatment shortening with different combinations of first-line drugs. However, in light of apparent rapid selection for fluoroquinolone-resistant mutants, relative frequency of serious adverse events and a perceived need to ‘reserve’ fluoroquinolones for the treatment of drug-resistant TB, their exact role in TB treatment remains to be determined. Other possible improvements may come from inhaled delivery or split dosing (linezolid) of anti-TB drugs for which toxicity (ethionamide) or lack of absorption (aminoglycosides and polypeptides) precludes delivery of maximally effective, oral doses, once daily. New classes of drugs with novel mechanisms of action, nitroimidazopyrans and a diarylquinoline, among others, may soon provide opportunities for improving treatment of drug-resistant TB or shortening treatment of drug-susceptible TB. Conclusion: More potential options for improved TB treatment currently exist than at any other time in the last 30 years. The challenge in TB pharmacotherapy is to devise well-tolerated, efficacious, short-duration regimens that can be used successfully against drug-resistant and drug-resistant TB in a heterogeneous population of patients

Acknowledgements

The authors are grateful for Ms Eva Tomczyk's invaluable research assistance.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.