192
Views
23
CrossRef citations to date
0
Altmetric
Original Research

Extracellular GC-rich DNA activates TLR9- and NF-kB-dependent signaling pathways in human adipose-derived mesenchymal stem cells (haMSCs)

, PhD, , , , PhD, , , PhD, , , , , & show all
Pages S99-S111 | Published online: 18 May 2012
 

Abstract

Introduction: The content of GC-rich ribosomal repeats (rDNA) in cell-free DNA (cfDNA) of patients with various diseases is several times higher as compared with genomic DNA (gDNA) and cfDNA of healthy donors. rDNA may act as Toll-like receptor 9 (TLR9) ligands and affect human adipose-derived mesenchymal stem cells (haMSCs). Here we explore effects of human cfDNAs and model rDNA fragments on cultured haMSCs.

Areas covered: Both cfDNAs and cloned rDNA stimulate expression of TLR9 (qRT-PCR). Treatment with cloned rDNA leads to an increase in the number of TLR9+ cells (FACS), expression levels for both TLR9 and Myd88, the translocation of nuclear factor-kappa B to the nuclei and up-regulation of TNFα and IL-10 cytokines (ELISA). As shown by an analysis of γH2AX-foci and MTT test, the preconditioning of haMSCs with cloned rDNA fragment increases the resistance of these cells to irradiation at 2Gy, while the treatments with control gDNA did not stimulate either TLR9- or NF-kB-dependent signaling pathways.

Expert opinion: GC-rich sequences present in cfDNA stimulate endogenous stems cells when body is exposed to adverse conditions. GC-rich fragments of human DNA may be used for preconditioning of therapeutic MSCs aiming at an increase in their survival in the ailing body.

Notes

This box summarizes key points contained in the article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.