535
Views
42
CrossRef citations to date
0
Altmetric
Reviews

Biomaterials and stem cells for tissue engineering

, &
Pages 527-540 | Published online: 17 Jan 2013
 

Abstract

Introduction: Organ failure and tissue loss are challenging health issues due to widespread injury, the lack of organs for transplantation and limitations of conventional artificial implants. The field of tissue engineering aims to provide alternative living substitutes that restore, maintain or improve tissue function.

Areas covered: In this paper, a wide range of porous scaffolds are reviewed, with an emphasis on phase-separation techniques that generate advantageous nanofibrous 3D scaffolds for stem cell-based tissue engineering applications. In addition, methods for presentation and delivery of bioactive molecules to mimic the properties of stem cell niches are summarized. Recent progress in using these bioinstructive scaffolds to support stem cell differentiation and tissue regeneration is also presented.

Expert opinion: Stem cells have great clinical potential because of their capability to differentiate into multiple cell types. Biomaterials have served as artificial extracellular environments to regulate stem cell behavior. Biomaterials with various physical, mechanical and chemical properties can be designed to control stem cell development for regeneration.

Conclusion: The research at the interface of stem cell biology and biomaterials has made and will continue to make exciting advances in tissue engineering.

Acknowledgements

The authors gratefully acknowledge the research grant support from the NIH (NIDCR DE015384, DE017689 and DE022327), NSF (DMR-1206575) and DOD (W81XWH-12-2-0008). MJG was partially supported by the NIH/NIDCR Training Grant (T32 DE 007057) at the University of Michigan School of Dentistry.

Notes

This box summarizes key points contained in the article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.