338
Views
36
CrossRef citations to date
0
Altmetric
Review

Cell-penetrating TIR BB loop decoy peptides

a novel class of TLR signaling inhibitors and a tool to study topology of TIR–TIR interactions

&
Pages 1035-1050 | Published online: 31 Jul 2007
 

Abstract

Toll-like receptors (TLR), a family of closely related type I, transmembrane, signal transducing proteins, sense invading pathogens early in the immune response to infection and deliver intracellular signals to the cell. Both TLRs and their adapter proteins possess a conserved region, the Toll/IL-1 resistance (TIR) domain. A subregion of ∼ 14 amino acids within the TIR domain, the BB loop, enables interactions between certain TLRs or between certain TLRs and their adapter molecules. Use of cell-penetrating decoy peptides composed of the sequence of the Drosophila antennapedia peptide (16 amino acids) juxtaposed to a specific TIR BB loop 14 amino acid sequences enables an evaluation of the relative efficacy of such BB loop peptides to inhibit TIR–TIR interactions and signaling. Moreover, failure of specific BB loop peptides to inhibit signaling suggests that this region of a particular TIR domain is likely to not be involved in signaling. This review discusses cell-penetrating decoy peptides as a new tool to further understanding of the molecular interactions required for TLR signaling and evaluates the potential of this approach for the creation of therapeutic agents.

Acknowledgement

This work was supported by NIH grants AI-18797, AI047233 and AI057490, awarded to SN Vogel.

Notes

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.