2,666
Views
53
CrossRef citations to date
0
Altmetric
Editorial

Emerging potential of exosomes and noncoding microRNAs for the treatment of neurological injury/diseases

, PhD &
 

Abstract

Recent discoveries of cellular generation of exosomes, small (∼ 30 – 100 nm) complex lipid membrane structures which encapsulate and transport proteins, RNAs, including microRNAs (miRNAs) have provided new insight in how cells within organisms communicate. These discoveries will likely have a major impact on the treatment of disease, with cancers and neurological diseases as evident targets. Exosomes provide a major medium of intercellular communications and thereby, there being a potential by altering communications and instructions for protein production, we can employ exosomes to treat diseases. We now have an opportunity to treat neurological disease by modifying intercellular communication networks. Recent work demonstrating that the therapeutic benefit provided by stem cells for the treatments of stroke and traumatic brain injury depend on their generation and release of exosomes provides a foundation for exosome-based therapy. Cell-free exosomes have also been recently employed to effectively treat stroke and brain trauma. The content of exosomes, particularly their miRNA cargo which can concurrently impact the post-transcriptional regulation of many genes, can be regulated. We are at the cusp of capitalizing on this important means of intercellular communications for the treatment of diseases, such as cancers and neurological diseases, among many others.

Declaration of interest

This work was in part supported by National Institutes of Health Grants R01 NS088656 (MC) and R01 NS075156 (ZGZ). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.