708
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Therapeutic targets for polycystic kidney disease

, PhD (Professor)
 

Abstract

Introduction: Polycystic kidney disease (PKD) is a common genetic disease in which renal enlargement and loss of function is caused by progressive expansion of tubular cysts. To reverse the detrimental effects of PKD gene mutation(s) and to slow cystic expansion, new drug therapies are required.

Areas covered: The underlying cell biology leading to identification of molecular targets for PKD is reviewed. Specific focus is on studies published at the early pre-clinical level. These include genetic and epigenetic modulators, and drugs to slow cystic expansion and disease progression. Discussion of specific drugs and clinical trials is not within the scope of this article. Literature research methods included EndNote and PubMed online searches using keyword combinations: polycystic kidneys disease, pre-clinical, molecular targets, signal transduction, genetic modulators, epigenetic, therapeutic, receptors, kinases. Where possible, the most recent citations concerning a given target are referenced.

Expert opinion: It is suggested that the most promising targets for future therapeutic development are those that target upstream signaling events at cell membranes, such as the vasopressin-2 receptor (AVPR2), EGFR/ErbB2, and the β-1-integrin receptor, as well as the intracellular integrator kinase, c-Src.

Declaration of interest

P Wilson has received support from the National Institute of Health USA (NIH) under research grant PO1 DK 62345. The author is further supported by Kidney Research UK, PKD Charity UK, The Rosetrees Trust, and a research advice meeting stipend from Otsuka Europe. P Wilson chairs Analogica Consulting Limited. The author has no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Notes

This box summarizes key points contained in the article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.