121
Views
8
CrossRef citations to date
0
Altmetric
Reviews

From sequence and structure of sulfotransferases and dihydropyrimidinases to an understanding of their mechanisms of action and function

, &
Pages 591-601 | Published online: 19 Apr 2010
 

Abstract

Importance of the field: Most enzymes that catalyze physiologically important reactions are known to be highly efficient and specific to their particular substrates. On the contrary, the enzymes of detoxification are known to catalyze unlimited number of substrates containing similar function groups that may have significant structural variation. This review explores nature's strategy to design enzymes with special properties.

Areas covered in this review: We review articles from 1981 to 2009, with special focus on the relationships of sequence, structure and function of cytosolic sulfotransferases and dihydropyrimidinase (DHP).

What the reader will gain: Specific amino acids responsible for substrate inhibition, substrate binding orientations, substrate specificity, quaternary structures and inactivation of sulfotransferases and DHP related enzymes are elucidated. Susceptibility to some diseases possibly resulted from the mutation of a single amino acid that causes dysfunction of these enzymes. Terminal deletion of amino acid that may affect surface interaction, subunit dissociation, stability alteration and then cause the syndrome of DHP deficiency is discussed.

Take home message: Based on the multiple sequence/structure analysis and with sufficient information from other members of the same enzyme families, the origin and mechanism of specific enzyme actions and proteins assembly can be clarified and predicted.

Notes

This box summarizes key points contained in the article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.