485
Views
49
CrossRef citations to date
0
Altmetric
Review

Drug transport across the placenta, role of the ABC drug efflux transporters

, PhD & , PhD
Pages 819-830 | Published online: 21 Nov 2007
 

Abstract

The placenta serves an important role both as a protective barrier as well as in normal fetal development. The ATP-binding cassette (ABC) proteins perform crucial functions in the distribution of nutrients and exchange of waste metabolites across the placenta. They also protect the developing fetus from xenobiotics to which the pregnant mother is exposed. Recent studies in P-glycoprotein (P-gp) deficient mdr1a and mdr1b (-/-) CF-1 mice have shown pronounced increases in fetal exposure to P-gp substrates due to increased transplacental penetration demonstrating the important protective role of P-gp to the developing fetus. The role of placental ABC transporter proteins in protecting the fetus against maternal exposure to drugs, toxins and other xenobiotics is discussed. Overall, the paucity of information available on the transplacental transfer of drugs emphasizes the need to further employ preclinical in vivo models for drug development in order to best predict fetal outcomes of drug administration to pregnant mothers.

Acknowledgements

The authors wish to thank G Anger for his assistance in proof-reading of the manuscript.

Notes

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.