309
Views
61
CrossRef citations to date
0
Altmetric
Review

Inflammation and lung carcinogenesis: applying findings in prevention and treatment

, , , , , , , , , , , , & show all
Pages 1405-1421 | Published online: 10 Jan 2014
 

Abstract

Lung carcinogenesis is a complex process requiring the acquisition of genetic mutations that confer the malignant phenotype as well as epigenetic alterations that may be manipulated in the course of therapy. Inflammatory signals in the lung cancer microenvironment can promote apoptosis resistance, proliferation, invasion, metastasis, and secretion of proangiogenic and immunosuppressive factors. Here, we discuss several prototypical inflammatory mediators controlling the malignant phenotype in lung cancer. Investigation into the detailed molecular mechanisms underlying the tumor-promoting effects of inflammation in lung cancer has revealed novel potential drug targets. Cytokines, growth factors and small-molecule inflammatory mediators released in the developing tumor microenvironment pave the way for epithelial–mesenchymal transition, the shift from a polarized, epithelial phenotype to a highly motile mesenchymal phenotype that becomes dysregulated during tumor invasion. Inflammatory mediators within the tumor microenvironment are derived from neoplastic cells as well as stromal and inflammatory cells; thus, lung cancer develops in a host environment in which the deregulated inflammatory response promotes tumor progression. Inflammation-related metabolic and catabolic enzymes (prostaglandin E2 synthase, prostaglandin I2 synthase and 15-hydroxyprostaglandin dehydrogenase), cell-surface receptors (E-type prostaglandin receptors) and transcription factors (ZEB1, SNAIL, PPARs, STATs and NF-κB) are differentially expressed in lung cancer cells compared with normal lung epithelial cells and, thus, may contribute to tumor initiation and progression. These newly discovered molecular mechanisms in the pathogenesis of lung cancer provide novel opportunities for targeted therapy and prevention in lung cancer.

Financial & competing interests disclosure

Supported by the University of California, Los Angeles (UCLA) Lung Cancer SPORE NCI P50 CA90388, grants from the University of California Tobacco-Related Research Program, the American Thoracic Society, Flight Attendants Medical Research Institute, Merit Review research funds from the Department of Veteran Affairs, and the UCLA Cancer Gene Medicine Training Program NCI 5 K12 CA076905.

The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.