688
Views
33
CrossRef citations to date
0
Altmetric
Symposium Papers

Present and future of fMRI in multiple sclerosis

&
Pages 27-31 | Published online: 29 Nov 2013
 

Abstract

Studies with functional MRI (fMRI) of the motor, visual and cognitive networks have consistently demonstrated functional cortical changes in the major multiple sclerosis (MS) clinical phenotypes. Compared with healthy subjects, these fMRI modifications are characterized by an altered recruitment of regions normally devoted to the performance of a given task, recruitment of additional areas, different resting state activity and disrupted connectivity. Studies that applied fMRI longitudinally have shown that such abnormalities vary over the course of the disease, not only after an acute relapse but also in clinically stable patients. fMRI and structural MRI abnormalities of the MS brain are correlated. Movement- and cognitive-associated fMRI changes were found to correlate with the amount of damage to brain normal-appearing white and gray matter and to the spinal cord. This suggests that, at least in some phases of the disease, increased recruitment of ‘critical’ central nervous system regions might contribute to limiting the functional impact of MS-related injury. fMRI has recently been applied to the assessment of functional modifications in the cervical cord of patients with MS. Evidence to date shows that cervical cord fMRI can reliably identify regions involved with tactile and proprioceptive stimulation in MS patients and different clinical phenotypes. As shown in brain studies, these investigations have detected increased recruitment in MS patients compared with healthy controls. At present, fMRI is a useful research tool, and reliable analysis and display methods have been developed. Future perspectives include development of fMRI paradigms for patients with MS-related disability and application of this technique in longitudinal studies to define the temporal evolution of functional cortical changes in different MS phenotypes as well as the effects of various therapeutic approaches on central nervous system plasticity.

Financial & competing interests disclosure

M Filippi received honoraria from Laboratorios Almirall, S.A. (Barcelona, Spain) for participating in the symposium and producing this supplement article. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Writing assistance was provided by Content Ed Net with funding from Laboratorios Almirall, S.A.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.