213
Views
30
CrossRef citations to date
0
Altmetric
Review

Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering

, &
Pages 719-728 | Published online: 09 Jan 2014
 

Abstract

Bone tissue has the ability to heal without a scar and to remodel, which promotes three basic functions: locomotion, protection of internal organs and mineral homeostasis. Although bone regeneration is highly efficient, some clinical situations – such as large bone defects – require specific treatments in order to promote bone healing. Allogenic or autologous bone grafts have been used in these procedures with limited success and, based on this, bone tissue-engineering approaches have been investigated extensively. Tissue engineering has been defined as the application of principles and techniques of the life sciences and engineering to the design, modification and growth of living tissues using biomaterials, cells and growth factors, alone or in combination. The association of cells with porous scaffolds to produce 3D hybrid osteogenic constructs is a common subject in bone tissue-engineering research and will be the focus of this review. We will present some aspects of bone biology, the cells and scaffolds used to engineer bone, and techniques to fabricate the hybrid biomaterial.

Financial & competing interests disclosure

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.