251
Views
15
CrossRef citations to date
0
Altmetric
Special Report

DNA double-strand break repair, immunodeficiency and the RIDDLE syndrome

&
Pages 169-185 | Published online: 10 Jan 2014
 

Abstract

DNA double-strand break (DSB) repair is an essential cellular process required to maintain genomic integrity in the face of potentially lethal genetic damage. Failure to repair a DSB can trigger cell death, whereas misrepair of the break can lead to the generation of chromosomal translocations, which is a known causative event in the development or progression of cancer. DSBs can be induced following exposure to certain exogenous agents, such as ionising radiation or radiomimetic chemicals, as well as occurring naturally as intermediates of normal physiological processes, in particular during B and T cell antigen receptor assembly. Human syndromes with deficiencies in DSB repair commonly exhibit immunodeficiency, highlighting the critical nature of this pathway for development and maturation of the immune system. In this article we review the different pathways utilized by the cell to repair DSBs and how an inherited defect in some of the genes that are critical regulators of this process can be the underlying cause of human disorders associated with genome instability and immune system dysfunction. We focus on a newly described human immunodeficiency disorder called radiosensitivity, immunodeficiency dysmorphic features and learning difficulties (RIDDLE) syndrome, with particular reference to the function of the defective gene, RNF168. We also consider the implications of this finding on the mechanisms controlling development of the immune system.

Acknowledgements

The authors would like to thank Malcolm Taylor, Tanja Stankovic, Fay Hollins and Roger Grand for critical reading of the manuscript.

Financial & competing interests disclosure

Rachel M Blundred is funded by an MRC project grant and Grant S Stewart is funded by a CR-UK Career Development Fellowship and a Lister Institute Research Prize. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.