35
Views
4
CrossRef citations to date
0
Altmetric
Special Report

Novel insights into the cellular basis of atrial fibrillation

Pages 907-916 | Published online: 10 Jan 2014
 

Abstract

Atrial fibrillation is the most common clinical cardiac arrhythmia. It is often initiated by ectopic beats arising from the pulmonary veins and atria. While pulmonary vein myocytes most likely contribute to atrial ectopic beats initiating atrial fibrillation, emerging evidence suggests the existence of other cell populations that may also contribute to atrial arrhythmias. In addition to sinus node-like and intestinal Cajal-like cells, we recently characterized a novel, melanocyte-like cell population in murine and human hearts that may contribute to atrial arrhythmogenic triggers in mice. Murine cardiac melanocyte-like cells are electrically excitable, and express adrenergic and muscarinic receptors. Adult mice lacking the gene encoding dopachrome tautomerase (Dct) are susceptible to atrial arrhythmias, and Dct is expressed by both murine and human cardiac melanocytes. While Dct-expressing cells are present in human hearts in regions from which atrial arrhythmias often arise, the contribution of these cells to clinical atrial arrhythmias remains to be determined.

Financial & competing interests disclosure

This work was supported by grants from the NIH (grant no. K08-HL074108-05), the WW Smith Charitable Trust and the Gunther Fund for Cardiovascular Research. The author is a named inventor on US patents pending to treat atrial arrhythmias by targeting melanocyte-like cells. The author has no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.