2,406
Views
110
CrossRef citations to date
0
Altmetric
Original Article

Fracture strength of monolithic all-ceramic crowns made of high translucent yttrium oxide-stabilized zirconium dioxide compared to porcelain-veneered crowns and lithium disilicate crowns

, , , &
Pages 145-153 | Received 15 Feb 2013, Accepted 21 Jun 2013, Published online: 18 Jul 2013
 

Abstract

Objective. The aim of the study was to provide data on the fracture strength of monolithic high translucent Y-TZP crowns and porcelain-veneered high translucent Y-TZP crown cores and to compare that data with the fracture strength of porcelain-veneered Y-TZP crown cores and monolithic lithium disilicate glass-ceramic crowns. Materials and methods. Sixty standardized crowns divided into six groups (n = 10) were fabricated: monolithic high translucent Y-TZP crowns, brand A, monolithic high translucent Y-TZP crowns, brand B, veneered high translucent Y-TZP crown cores, brand A, veneered high translucent Y-TZP crown cores, brand B, heat-pressed monolithic lithium disilicate crowns and veneered Y-TZP crown cores. All crowns were thermocycled, cemented onto dies, cyclically pre-loaded and finally loaded to fracture. Results. The monolithic Y-TZP groups showed significantly higher fracture strength (2795 N and 3038 N) compared to all other groups. The fracture strength in the veneered Y-TZP group (2229 N) was significantly higher than the monolithic lithium disilicate group (1856 N) and the veneered high translucent Y-TZP groups (1480 N and 1808 N). Conclusions. The fracture strength of monolithic high translucent Y-TZP crowns is considerably higher than that of porcelain-veneered Y-TZP crown cores, porcelain-veneered high translucent Y-TZP crown cores and monolithic lithium disilicate crowns. The fracture strength of a crown made of monolithic high translucent Y-TZP is, with a large safety margin, sufficient for clinical use for the majority of patients. Porcelain-veneered Y-TZP crown cores show higher fracture resistance than monolithic lithium disilicate crowns.

Acknowledgments

The authors would like to thank Normedentia AB and Ivoclar Vivadent® AG for generously supplying the materials and M-Tec Dental/OpenMill® AB, Teknodont AB and Wallins Mekaniska i Eslöv AB for kindly supporting processing of the materials.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.