168
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Anisotropic local physical properties of human dental enamel in comparison to properties of some common dental filling materials

, , , &
Pages 591-596 | Received 06 Sep 2013, Accepted 16 Dec 2013, Published online: 27 Jan 2014
 

Abstract

Objective. A major aspect in evaluating the quality of dental materials is their physical properties. Their properties should be a best fit of the ones of dental hard tissues. Manufacturers give data sheets for each material. The properties listed are characterized by a specific value. This assumes (but does not prove) that there is no direction dependence of the properties. However, dental enamel has direction-dependent properties which additionally vary with location in the tooth. The aim of this paper is to show the local direction dependence of physical properties like the elastic modulus or the thermal expansion in dental hard tissues. With this knowledge the ‘perfect filling/dental material' could be characterized. Materials and method. Enamel sections of ∼400–500 μm thickness have been cut with a diamond saw from labial/buccal to palatal/lingual (canine, premolar and molar) and parallel to labial (incisor). Crystallite arrangements have been measured in over 400 data points on all types of teeth with x-ray scattering techniques, known from materials science. Results. X-ray scattering measurements show impressively that dental enamel has a strong direction dependence of its physical properties which also varies with location within the tooth. Dental materials possess only little or no property direction dependence. Therefore, a mismatch was found between enamel and dental materials properties. Conclusion. Since dental materials should possess equal (direction depending) properties, worthwhile properties could be characterized by transferring the directional properties of enamel into a property ‘wish list' which future dental materials should fulfil. Hereby the ‘perfect dental material' can be characterized.

Acknowledgements

The authors acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) in part and beam time from HASYLAB/ DESY Hamburg as well as ANKA/ KIT Karlsruhe. The help of Dr-Ing H. Klein, Dr H. Sowa, BSc I. Janßen, W. Dröse and Professor S. Webb (all GZG, University of Goettingen) is also acknowledged.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.