268
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Preparation and properties of calcium-silicate filled resins for dental restoration. Part II: Micro-mechanical behaviour to primed mineral-depleted dentine

Pages 607-617 | Received 19 Sep 2013, Accepted 29 Dec 2013, Published online: 04 Feb 2014
 

Abstract

Objective. Evaluating microtensile bond strength (μTBS) and Knoop micro-hardness (KHN) of resin bonded-dentine interfaces created with two methacrylate-based systems either incorporating Bioglass® 45S5 (3-E&RA/BG) or MTA (3-E&RA/WMTA). Materials and methods. Solvated resins (50% ethanol/50% co-monomers) were used as primers while their neat counterparts were filled with the two calcium-silicate compounds. Application of neat resin adhesive with no filler served as control (3-E&RA). μTBS, KHN analysis and confocal tandem scanning microscopy (TSM) micropermeability were carried out after 24 h and 10 months of storage in phosphate buffer solution (DPBS). Scanning electron microscopy (SEM) was also performed after debonding. Results. High μTBS values were achieved in all groups after 24 h of DPBS storage. On the contrary, solely the specimens created using 3-E&RA/BG and 3-E&RA/WMTA agents showed no significant reduction in terms of μTBS even after 10 months in DPBS; similarly, they did not restore the average superficial micro-hardness to the level of sound dentine, but maintained unchanged KHN values, and no statistical decrease was found following 10 months of DPBS storage. The only statistically significant changes occurred in the resin–dentine interfaces bonded with 3-E&RA that were subjected to a reduction of both μTBS and KHN values with ageing. In terms of micropermeability, adverse results were obtained with 3-E&RA while 3-E&RA/BG and 3-E&RA/WMTA demonstrated a beneficial effect after prolonged DPBS storage. Conclusion. Calcium-silicate filled composite resins performed better than a current etch-and-rinse adhesive and had a therapeutic/protective effect on the micro-mechanical properties of mineral-depleted resin–dentine interfaces. Clinical significance. The incorporation of calcium-silicates into dental restorative and bonding agents can create more biomimetic (life-like) restorations. This will not only enable these materials to mimic the physical characteristics of the tooth structure, but will also stabilize and protect the remaining dental hard tissues.

Acknowledgements

The author would like to thank Dr Ron Wilson of the Division of Periodontology, Dental Institute, King’s College London for his expertise in statistical analysis.

Declaration of interest: The author reports no conflicts of interest. The author alone is responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.