446
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Direct effect of chlorine dioxide, zinc chloride and chlorhexidine solution on the gaseous volatile sulfur compounds

, , , &
Pages 645-650 | Received 10 Sep 2013, Accepted 10 Jan 2014, Published online: 10 Feb 2014
 

Abstract

Objective. This study focused on the ability of aqueous anti-volatile-sulfur-compound (VSC) solutions to eliminate gaseous VSCs by direct contact in a sealed space to describe possible mode of action of anti-VSC agents. Materials and methods. Twenty milliliters of each experimental solution, 0.16% sodium chlorite, 0.25% zinc chloride, 0.1% chlorhexidine and distilled water, was injected into a Teflon bag containing mixed VSCs, hydrogen sulfide, methyl mercaptan and dimethyl sulfide and mixed vigorously for 30 s. The VSC concentration was measured by gas chromatography before, immediately after, 30 min and 60 min after mixing. Results. The sodium chlorite solution reduced the VSC concentration remarkably. After mixing, nearly all VSCs were eliminated immediately and no VSCs were detected at 30 and 60 min post-mixing. However, in the other solutions, the VSC concentration decreased by ∼30% immediately after mixing and there was no further decrease. Conclusion. The results suggest that sodium chlorite solution has the effect of eliminating gaseous VSCs directly. This must be because it can release chlorine dioxide gas which can react directly with gaseous VSCs. In the case of other solutions that have been proved to be effective to reduce halitosis clinically, it can be proposed that their anti-VSC effect is less likely due to the direct chemical elimination of gaseous VSCs in the mouth.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.