28
Views
29
CrossRef citations to date
0
Altmetric
Original Article

The Effects of Melatonin on the Antioxidant Systems in Experimental Spinal Injury

, , , , , , , , , & show all
Pages 63-73 | Received 12 Dec 1999, Published online: 07 Jul 2009
 

Abstract

Melatonin has been recently shown by various in-vivo and in-vitro studies to exert potent neutralising effects on hydroxyl radicals, stimulate glutathione peroxidase (GSH-Px) activity, and protect catalase (CAT) from the destructive activity of hydroxyl radicals in neural tissue. We aimed to investigate the possible effects of pharmacological dose of melatonin on some of the antioxidant defence systems in an in-vivo study of experimental spinal injury. Seven groups of adult male Sprague Dawley rats were used in the following scheme: Group I: Naïve (n = 6), Group II: Lesion (n = 8), Group III: Melatonin (n = 5), Group IV: Melatonin + Lesion (n = 8), Group V: Placebo + Lesion (n = 5), Group VI: Sham operation (n = 5), and Group VII: Placebo (n = 5). Experimental spinal injury was induced at level T7-T8 by 5 sec compression of the total cord with an aneurism clip on anaesthetised and laminectomized animals. The total 10mg/kg dose of melatonin (Sigma) dissolved in alcohol-water was administered i.p. four times in 2.5 mg/kg doses, at 20min pre-, at the time of and at 1h and 2h post-compression. At 24±2h post-injury, the rats were euthanized and the lesioned segments of cord were dissected and homogenised with special care taken to distribute equal amount of injured tissue in each sample for analysis of reduced glutathione (GSH), oxidised glutathione (GSSG), superoxide dismutase (SOD), and CAT activity. Compression injury decreased GSH/GSSG ratio significantly (p <. 0001). Melatonin, by itself, significantly decreased GSSG content (p <. 05) and increased CAT activity (p <. 05) in the naive rats. Melatonin treatment decreased GSSG activity, thus elevating GSH/GSSG ratio, and also increased SOD and CAT activity without reaching statistical significance in the lesioned animals. In conclusion, pharmacological dose of systemically applied melatonin seemed to support some features of the antioxidant defence systems in our hands.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.