138
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Neural metabolite changes in corpus striatum after rat multipotent mesenchymal stem cells transplanted in hemiparkinsonian rats by magnetic resonance spectroscopy

, , , , , & show all
Pages 883-891 | Received 08 Aug 2012, Accepted 08 Jun 2013, Published online: 01 Aug 2013
 

Abstract

Objective: To investigate the biochemical changes in striatum after rat bone marrow mesenchymal stem cells (MSCs) were transplanted into hemiparkinsonian rats and to further confirm the therapeutic effects of rat MSCs for Parkinson's disease (PD). Methods: 5-bromo-2-deoxyuridine (BrdU)-labeled MSCs were transplanted into the corpus striatum of the 6-hydroxydopamine (6-OHDA)-injected side of six PD model rats. Before and 8 weeks after MSC transplantation, ethological changes in PD rats were assessed. The expression of tyrosine hydroxylase (TH) in substantia nigra (SN) and striatum were measured using immunohistochemical methods. The differentiation of MSCs was detected by double immunofluorescence techniques. The concentrations of neural metabolites of N-acetylaspartate (NAA), choline (Cho) and creatine (Cr) were measured by 1H-magnetic resonance spectroscopy (MRS). Relative concentrations of NAA/Cr and Cho/Cr were calculated. Results: The behavior of PD rats in rotarod tests improved, and there were statistical differences in TH-positive cells in SN and TH-positive terminals in striatum after the transplantation of BrdU-labeled MSCs. Transplanted MSCs differentiated into MAP-2-positive neurons. Especially compared with pre-MSC transplantation, the neural metabolite NAA/Cr ratio of the 6-OHDA-injected side of the striatum increased (P < 0.05) and the Cho/Cr ratio decreased (P < 0.05). Conclusion: MSCs transplantation apparently improves neuronal function in the striatum of PD rats.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.