156
Views
13
CrossRef citations to date
0
Altmetric
Research Article

The Nitric oxide/CGMP/KATP pathway mediates systemic and central antinociception induced by resistance exercise in rats

, , , , , , & show all
Pages 765-773 | Received 29 Jul 2014, Accepted 24 Sep 2014, Published online: 29 Oct 2014
 

Abstract

Resistance exercise (RE) is characterized to increase strength, tone, mass, and/or muscular endurance and also for produces many beneficial effects, such as blood pressure and osteoporosis reduction, diabetes mellitus control, and analgesia. However, few studies have investigated endogenous mechanisms involved in the RE-induced analgesia. Thus, the aim of this study was evaluate the role of the NO/CGMP/KATP pathway in the antinociception induced by RE. Wistar rats were submitted to acute RE in a weight-lifting model. The nociceptive threshold was measured by mechanical nociceptive test (paw-withdrawal). To investigate the involvement of the NO/CGMP/KATP pathway the following nitric oxide synthase (NOS) non-specific and specific inhibitors were used: N-nitro-l-arginine (NOArg), Aminoguanidine, N5-(1-Iminoethyl)-l-ornithine dihydrocloride (l-NIO), Nω-Propyl-l-arginine (l-NPA); guanylyl cyclase inhibitor, 1H-[1,2,4]oxidiazolo[4,3-a]quinoxalin-1-one (ODQ); and KATP channel blocker, Glybenclamide; all administered subcutaneously, intrathecally and intracerebroventricularly. Plasma and cerebrospinal fluid (CSF) nitrite levels were determined by spectrophotometry. The RE protocol produced antinociception, which was significantly reversed by NOS specific and unspecific inhibitors, guanylyl cyclase inhibitor (ODQ) and KATP channel blocker (Glybenclamide). RE was also responsible for increasing nitrite levels in both plasma and CSF. These finding suggest that the NO/CGMP/KATP pathway participates in antinociception induced by RE.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.