593
Views
31
CrossRef citations to date
0
Altmetric
Gastrointestinal Cancer

Alpha-ketoglutarate (AKG) inhibits proliferation of colon adenocarcinoma cells in normoxic conditions

, , , , , & show all
Pages 565-571 | Received 06 Sep 2011, Accepted 17 Jan 2012, Published online: 10 Apr 2012
 

Abstract

Background and objective. Alpha-ketoglutarate (AKG), a key intermediate in Krebs cycle, is an important biological compound involved in the formation of amino acids, nitrogen transport, and oxidation reactions. AKG is already commercially available as a dietary supplement and its supplementation with glutamine, arginine, or ornithine alpha-ketoglutarate has been recently considered to improve anticancer immune functions. It is well documented that AKG treatment of Hep3B hepatoma cells in hypoxia induced HIF-alpha (hypoxia-inducible factor) degradation and reduced vascular endothelial growth factor (VEGF) synthesis. Moreover, AKG showed potent antitumor effects in murine tumor xenograft model, inhibiting tumor growth, angiogenesis, and VEGF gene expression. However, the mechanisms of its anticancer activity in normoxia have not been examined so far. Results. Here, we report that in normoxia, AKG inhibited proliferation of colon adenocarcinoma cell lines: Caco-2, HT-29, and LS-180, representing different stages of colon carcinogenesis. Furthermore, AKG influenced the cell cycle, enhancing the expression of the inhibitors of cyclin-dependent kinases p21 Waf1/Cip1 and p27 Kip1. Moreover, expression of cyclin D1, required in G1/S transmission, was decreased, which accompanied with the significant increase in cell number in G1 phase. AKG affected also one the key cell cycle regulator, Rb, and reduced its activation status. Conclusion. In this study for the first time, the antiproliferative activity of AKG on colon adenocarcinoma Caco-2, HT-29, and LS-180 cells in normoxic conditions was revealed. Taking into consideration an anticancer activity both in hypoxic and normoxic conditions, AKG may be considered as a new potent chemopreventive agent.

Acknowledgements

This work was supported by the SGPlus, Sweden.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.