Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 18, 1988 - Issue 8
8
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Comparison of covalent binding from halothane metabolism in hepatic microsomes from phenobarbital-induced and hyperthyroid rats

, , , &
Pages 991-1001 | Received 21 Jul 1987, Accepted 10 Mar 1988, Published online: 30 Sep 2009
 

Abstract

1. Hepatic microsomal suspensions from rats pretreated with saline, phenobarbital or triiodothyronine were incubated with 14C-halothane under aerobic and anerobic conditions.

2. Metabolism of halothane by microsomes from phenobarbital-induced rats under anaerobic conditions resulted in covalent binding of 14C to microsomal lipids, and to a lesser extent, microsomal proteins, as seen in previous studies. Covalent binding was decreased with incubation under aerobic conditions.

3. Metabolism of halothane by microsomal suspensions from hyperthyroid rats produced much less covalent binding to microsomal lipids and proteins, with binding similar to, or less than, that observed with microsomes from saline-treated rats. The covalent binding of halothane to protein of microsomes from hyperthyroid rats was dependent upon metabolism, and was inhibited by SKF 525A, reduced glutathione, or cytosol.

4. The in vitro observations with respect to covalent binding are inconsistent with previous reports on halothane hepatotoxicity in hyperthyroid rats in vivo. This inconsistency and the relatively small extent of covalent binding with microsomes from hyperthyroid rats observed, suggests that covalent binding is not an important mechanism of halothane hepatotoxicity in the hyperthyroid rat model.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.