10
Views
11
CrossRef citations to date
0
Altmetric
Original Article

The Early Causal Influence of Cell Size Upon Synaptic Number: The Mutant Gigas of Drosophila

Pages 157-176 | Received 30 Jul 1993, Published online: 11 Jul 2009
 

Abstract

The number of synaptic contacts formed by a neuron is known to vary with its surface area. This could be because large neurons are able to establish more synaptic sites, or because those neurons that are able to establish more sites are subsequently able to enlarge. To test between these two possibilities clones of enlarged ommatidia were generated in the retina of the Drosophila mutant gigas, by mitotic recombination following γ-irradiation in the third-instar larva. The numbers of afferent synaptic contacts formed by the photoreceptor terminals in the first optic neuropil, or lamina, were then counted in the adult. The terminals of mutant photoreceptors were also enlarged, but by varying degrees. The sizes of their profiles in single sections merged with the size distribution of terminals having a wild-type phenotype, lying outside the clone in the same lamina. A perimeter of 6.0 μm for the profiles of receptor terminal in cross section was established as a criterion for distinguishing between normal and mutant phenotypes. The mutant terminals had more presynaptic sites. Because only the gigas terminals are mutant and because they enlarged at a time long before synapse formation occurred in the lamina we may conclude that cell enlargement preceded elevated synaptic number. The increase in synaptic number roughly matched the increased membrane surface of the terminals, so as nearly to preserve a constant areal density of synaptic sites over a 5-fold range in synaptic frequency.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.