250
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Perfluorodecalin-soluble fluorescent dyes for the monitoring of circulating nanocapsules with intravital fluorescence microscopy

, , , , , , , & show all
Pages 738-745 | Received 21 Oct 2013, Accepted 08 Apr 2014, Published online: 25 Jun 2014
 

Abstract

Perfluorodecalin (PFD) is an established artificial oxygen carrier due to its physical capability to solve the respiratory gases oxygen and carbon dioxide. PFD-filled poly(n-butyl-cyanoacrylate) (PACA) nanocapsules are already discussed as effective artificial oxygen carriers, and their principal suitability for intravenous administration had been shown. To further elucidate their action in vivo, it is imperative to characterise their preclinical safety and particularly their biodistribution. For these purposes, intravital fluorescence microscopy would display an attractive technique in order to monitor the PACA nanocapsules in vivo, but unfortunately, it is impossible to stain the PACA nanocapsules with a fluorescent dye fulfilling special criteria required for in vivo microscopy. In order to develop such a dye, a long-chained fluorinated thiol was used to modify a BODIPY derivative that is a highly fluorescent organic compound belonging to the difluoro-boraindacene family, as well as to functionalise mesoscopic systems, such as CdSe/ZnS-quantum dots and gold nanoparticles. Furthermore, a functionalisation of porphyrin derivatives was investigated by placing divalent ions in the centre of these systems. Due to the high solubility of all synthesised dyes in PFD, it should be possible to stain PFD-filled particles in general. However, only the functionalised BODIPY derivative was suitable for in vivo monitoring of the PFD-filled PACA nanocapsules.

Acknowledgements

The authors thank Anna Wrobeln from the research group of Prof. Dr. H. de Groot, Institute of Physiological Chemistry of the University Hospital Essen, for checking the fluorescence of the BODIPY-thiol-labelled PFD-filled PACA nanocapsules by laser scanning microscopy.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.