145
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Lyophilised Vegetal BM 297 ATO-Inulin lipid-based synbiotic microparticles containing Bifidobacterium longum LMG 13197: design and characterisation

, &
Pages 820-827 | Received 16 Feb 2015, Accepted 25 Aug 2015, Published online: 12 Oct 2015
 

Abstract

This study aimed at the manufacturing and characterisation of Vegetal BM 297 ATO-inulin-Bifidobacterium longum LMG 13197 microparticles prepared by freeze drying. Emulsions containing 1%, 1.5%, 2%, 3.5% or 5% w/v inulin were prepared, with or without centrifugation before freeze drying. Morphological properties, particle size distribution, encapsulation efficiency of the microparticles and their ability to preserve viability of the enclosed B. longum LMG 13197 cells were evaluated. The microparticles produced from both formulations without a centrifugation step were irregular, porous with concavities and contained high number of bacterial cells. Formulations with or without inulin had average particle sizes of 33.4–81.0 μm with encapsulation efficiencies of 82% and 88%, respectively. Vegetal-inulin microparticles have the morphology and size that will enable their even distribution in final food products, and hence, they have the potential for use as a functional food additive because they are likely to deliver sufficient numbers of viable bacteria.

Acknowledgements

The authors are grateful to Mr Allan Hall of the Unit for Microscopy and Microanalysis, University of Pretoria, for his assistance with microscopy work.

Declaration of interest

This study was financially supported by the University of Pretoria and the National Research Foundation of South Africa. The authors report no conflict of interest. Authors are responsible for the content and writing of the article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.