2,749
Views
110
CrossRef citations to date
0
Altmetric
Hyperthermia Classic Articles

Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia

, , , , &
Pages 499-511 | Published online: 24 Oct 2009
 

Abstract

The potential of colloidal subdomain ferrite particle suspensions (SDP) (‘magnetic fluids’), exposed to an alternating magnetic field, is evaluated for hyperthermia. Power absorption measurements of different magnetic fluids are presented in comparison to multidomain ferrite particles (MDP). Variations with frequency as well as magnetic field strength have been investigated. The experimental results clearly indicate a definite superiority of even non-optimized magnetic fluids over MDP ferrites regarding their specific absorption rate (SAR). Based on the work of [Shliomis, Pshenichnikov, Morozov, Shurubor. Magnetic properties of ferrocolloids. J Magn Magn Mater 1990;85:40–46 and [Hanson The frequency dependence of the complex susceptibility of magnetic fluids. J Magn Magn Mater, 1991;96 (In press).], a solid-state physical model is applied to explain the specific properties of magnetic fluids with respect to a possible use in hyperthermia. The experimentally determined SAR data on magnetic fluids are used to estimate the heating capabilities of a magnetic induction heating technique assuming typical human dimensions and tissue parameters. It is considered that for a moderate concentration of 5 mg ferrite per gram tumour (i.e. 0.5% w/w) and clinically acceptable magnetic fields, intratumoral power absorption is comparable to RF heating with local applicators and superior to regional RF heating (by comparison with clinical SAR measurements from regional and local hyperthermia treatments). Owing to the high particle density per volume, inductive heating by magnetic fluids can improve temperature distributions in critical regions. Furthermore, localized application of magnetic fluids in a tumour might be easier and less traumatic than interstitial implantation techniques.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.