3,368
Views
28
CrossRef citations to date
0
Altmetric
Research Article

Magnetic resonance imaging of tumor necrosis

, , &
Pages 427-434 | Received 30 Apr 2010, Accepted 18 Sep 2010, Published online: 18 Oct 2010
 

Abstract

Background. The prognostic and predictive value of magnetic resonance (MR) investigations in clinical oncology may be improved by implementing strategies for discriminating between viable and necrotic tissue in tumors. The purpose of this preclinical study was to investigate whether the extent of necrosis in tumors can be assessed by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and/or T2-weighted MR imaging. Material and methods. Three amelanotic human melanoma xenograft lines differing substantially in tumor necrotic fraction, necrotic pattern, extracellular volume fraction, and blood perfusion were used as experimental models of human cancer. MRI was performed at 1.5 T and a spatial resolution of 0.23 × 0.47 × 2.0 mm3. Gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA) was used as contrast agent. Plots of Gd-DTPA concentration versus time were generated for each voxel, and three parameters were calculated for each curve: the extracellular volume fraction (νe), the final slope (a), and the Gd-DTPA concentration at one minute after the contrast administration (C1min). Parametric images of νe, a, C1min, and the signal intensity in T2-weighted images (SIT2W) were compared with the histology of the imaged tissue. Results. The νe, a, and C1min frequency distributions were significantly different for necrotic and viable tissue in all three tumor lines. By using adequate values of νe, a, and C1min to discriminate between necrotic and viable tissue, significant correlations were found between the fraction of necrotic tissue assessed by MRI and the fraction of necrotic tissue assessed by image analysis of histological preparations. On the other hand, the SIT2W frequency distributions did not differ significantly between necrotic and viable tissue in two of the three tumor lines. Conclusion. Necrotic regions in tumor tissue can be identified in parametric images derived from DCE-MRI series, whereas T2-weighted images are unsuitable for detection of tumor necrosis.

Acknowledgements

Financial support was received from the Norwegian Cancer Society and the South-Eastern Norway Regional Health Authority.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.