2,248
Views
42
CrossRef citations to date
0
Altmetric
Original Articles

Quantification of radiation-induced lung damage with CT scans: The possible benefit for radiogenomics

, , , , , , , , , & show all
Pages 1405-1410 | Received 03 May 2013, Accepted 02 Jun 2013, Published online: 19 Aug 2013
 

Abstract

Background. Radiation-induced lung damage (RILD) is an important problem. Although physical parameters such as the mean lung dose are used in clinical practice, they are not suited for individualised radiotherapy. Objective, quantitative measurements of RILD on a continuous instead of on an ordinal, semi-quantitative, semi-subjective scale, are needed. Methods. Hounsfield unit (HU) changes before versus three months post-radiotherapy were correlated per voxel with the radiotherapy dose in 95 lung cancer patients. Deformable registration was used to register pre- and post-CT scans and the density increase was quantified for various dose bins. The dose-response curve for increased HU was quantified using the slope of a linear regression (HU/Gy). The end-point for the toxicity analysis was dyspnoea ≥ grade 2. Results. Radiation dose was linearly correlated with the change in HU (mean R2 = 0.74 ± 0.28). No differences in HU/Gy between groups treated with stereotactic radiotherapy, conventional radiotherapy alone, sequential or concurrent chemo- radiotherapy were observed. In the whole patient group, 33/95 (34.7%) had dyspnoea ≥ G2. Of the 48 patients with a HU/Gy below the median, 16 (33.3%) developed dyspnoea ≥ G2, while in the 47 patients with a HU/Gy above the median, 17 (36.1%) had dyspnoea ≥ G2 (not significant). Individual patients showed a nearly 21-fold difference in radiosensitivity, with HU/Gy ranging from 0 to 10 HU/Gy. Conclusions. HU changes identify objectively the whole range of individual radiosensitivity on a continuous, quantitative scale. CT density changes may allow more robust and accurate radiogenomics studies.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.